Problem 20

(a) If $f_{0}(x)=\frac{1}{2-x}$ and $f_{n+1}=f_{0} \circ f_{n}$ for $n=0,1,2, \ldots$, find an expression for $f_{n}(x)$ and use mathematical induction to prove it.
(b) Graph $f_{0}, f_{1}, f_{2}, f_{3}$ on the same screen and describe the effects of repeated composition.

Solution

Write out the first few formulas using the given definitions and try to find a pattern.

$$
\begin{aligned}
& f_{0}(x)=\frac{1}{2-x} \\
& f_{1}(x)=f_{0+1}=f_{0} \circ f_{0}=f_{0}\left(f_{0}(x)\right)=\frac{1}{2-\left(\frac{1}{2-x}\right)}=\frac{1}{\frac{2(2-x)-1}{2-x}}=\frac{2-x}{3-2 x} \\
& f_{2}(x)=f_{1+1}=f_{0} \circ f_{1}=f_{0}\left(f_{1}(x)\right)=\frac{1}{2-\left(\frac{2-x}{3-2 x}\right)}=\frac{1}{\frac{2(3-2 x)-(2-x)}{3-2 x}}=\frac{3-2 x}{4-3 x} \\
& f_{3}(x)=f_{2+1}=f_{0} \circ f_{2}=f_{0}\left(f_{2}(x)\right)=\frac{1}{2-\left(\frac{3-2 x}{4-3 x}\right)}=\frac{1}{\frac{2(4-3 x)-(3-2 x)}{4-3 x}}=\frac{4-3 x}{5-4 x} \\
& f_{4}(x)=f_{3+1}=f_{0} \circ f_{3}=f_{0}\left(f_{3}(x)\right)=\frac{1}{2-\left(\frac{4-3 x}{5-4 x}\right)}=\frac{1}{\frac{2(5-4 x)-(4-3 x)}{5-4 x}}=\frac{5-4 x}{6-5 x} \\
& \quad \vdots \\
& f_{n}(x)=\frac{(n+1)-n x}{(n+2)-(n+1) x}
\end{aligned}
$$

In order to prove this, use the principle of mathematical induction. Start by showing that the base case is true: If $n=0$, then

$$
f_{0}(x)=\frac{(1)-(0) x}{(2)-(1) x}=\frac{1}{2-x} .
$$

Now assume the inductive hypothesis, that is,

$$
f_{k}(x)=\frac{(k+1)-k x}{(k+2)-(k+1) x},
$$

for some positive integer k. The aim is to show that

$$
f_{k+1}(x)=\frac{[(k+1)+1]-(k+1) x}{[(k+1)+2]-[(k+1)+1] x} .
$$

We have

$$
\begin{aligned}
f_{k+1}(x) & =f_{0} \circ f_{k} \\
& =f_{0}\left(f_{k}(x)\right) \\
& =\frac{1}{2-\frac{(k+1)-k x}{(k+2)-(k+1) x}} \\
& =\frac{1}{\frac{2[(k+2)-(k+1) x]-[(k+1)-k x]}{(k+2)-(k+1) x}} \\
& =\frac{(k+2)-(k+1) x}{2[(k+2)-(k+1) x]-[(k+1)-k x]} \\
& =\frac{(k+2)-(k+1) x}{2(k+2)-(k+1)-[2(k+1)-k] x} \\
& =\frac{(k+2)-(k+1) x}{(k+3)-(k+2) x} \\
& =\frac{[(k+1)+1]-(k+1) x}{[(k+1)+2]-[(k+1)+1] x} .
\end{aligned}
$$

Therefore, by the principle of mathematical induction,

$$
f_{n}(x)=\frac{(n+1)-n x}{(n+2)-(n+1) x}, \quad n \geq 0 .
$$

Repeated composition shifts the graph up less and less and brings the curves closer together.

